27 research outputs found

    The Society for Immunotherapy of Cancer statement on best practices for multiplex immunohistochemistry (IHC) and immunofluorescence (IF) staining and validation.

    Get PDF
    OBJECTIVES: The interaction between the immune system and tumor cells is an important feature for the prognosis and treatment of cancer. Multiplex immunohistochemistry (mIHC) and multiplex immunofluorescence (mIF) analyses are emerging technologies that can be used to help quantify immune cell subsets, their functional state, and their spatial arrangement within the tumor microenvironment. METHODS: The Society for Immunotherapy of Cancer (SITC) convened a task force of pathologists and laboratory leaders from academic centers as well as experts from pharmaceutical and diagnostic companies to develop best practice guidelines for the optimization and validation of mIHC/mIF assays across platforms. RESULTS: Representative outputs and the advantages and disadvantages of mIHC/mIF approaches, such as multiplexed chromogenic IHC, multiplexed immunohistochemical consecutive staining on single slide, mIF (including multispectral approaches), tissue-based mass spectrometry, and digital spatial profiling are discussed. CONCLUSIONS: mIHC/mIF technologies are becoming standard tools for biomarker studies and are likely to enter routine clinical practice in the near future. Careful assay optimization and validation will help ensure outputs are robust and comparable across laboratories as well as potentially across mIHC/mIF platforms. Quantitative image analysis of mIHC/mIF output and data management considerations will be addressed in a complementary manuscript from this task force

    Pitfalls in machine learning‐based assessment of tumor‐infiltrating lymphocytes in breast cancer: a report of the international immuno‐oncology biomarker working group

    Get PDF
    The clinical significance of the tumor-immune interaction in breast cancer (BC) has been well established, and tumor-infiltrating lymphocytes (TILs) have emerged as a predictive and prognostic biomarker for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2 negative) breast cancer (TNBC) and HER2-positive breast cancer. How computational assessment of TILs can complement manual TIL-assessment in trial- and daily practices is currently debated and still unclear. Recent efforts to use machine learning (ML) for the automated evaluation of TILs show promising results. We review state-of-the-art approaches and identify pitfalls and challenges by studying the root cause of ML discordances in comparison to manual TILs quantification. We categorize our findings into four main topics; (i) technical slide issues, (ii) ML and image analysis aspects, (iii) data challenges, and (iv) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns, or design choices in the computational implementation. To aid the adoption of ML in TILs assessment, we provide an in-depth discussion of ML and image analysis including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial- and routine clinical management of patients with TNBC

    Proliferation of HIV-infected renal epithelial cells following virus acquisition from infected macrophages

    No full text
    Objectives: HIV-1 can infect and persist in different organs and tissues, resulting in the generation of multiple viral compartments and reservoirs. Increasing evidence supports the kidney as such a reservoir. Previous work demonstrated that HIV-1 infected CD4(+)T-cells transfer virus to renal tubule epithelial (RTE) cells through cell-to-cell contact. In addition to CD4(+)T cells, macrophages represent the other major target of HIV-1. Renal macrophages induce and regulate inflammatory responses and are critical to homeostatic regulation of the kidney environment. Combined with their ability to harbour virus, macrophages may also play an important role in the spread of HIV-1 infection in the kidney. Design and methods: Multiparametric histochemistry analysis was performed on kidney biopsies from individuals with HIV-1 associated nephropathy (HIVAN). Primary monocyte-derived macrophages were infected with a GFP-expressing replication competent HIV-1. HIV-1 transfer from macrophages to RTE cells was carried out in a coculture system and evaluated by fluorescence-microscopy and flow-cytometry. Live imaging was performed to assess the fate of HIV-1 infected RTE cells over time. Results: We show that macrophages are abundantly present in the renal inflammatory infiltrate of individuals with HIVAN. We observed contact-dependent HIV-1 transfer from infected macrophages to both primary and immortalized renal cells. Live imaging of HIV-1 infected RTE cells revealed four different fates: proliferation, hypertrophy, latency and cell death. Conclusion: Our study suggests that macrophages may play a role in the dissemination of HIV-1 in the kidney and that proliferation of infected renal cells may contribute to HIV-1 persistence in this compartment

    Atypical Carcinoid Tumor and Chondroid and Glandular Hamartoma of the Arythenoid Region

    No full text
    Neuroendocrine tumors of the head and neck are rare. Laryngeal hamartomas are even rarer especially in adult patients. Here in a 69-year-old male patient is presented who had atypical carcinoid tumor and chondroid and glandular hamartoma of the medial mucosa of the left arythenoid. To the best of our knowledge, this is the first case presenting the association of these 2 rare lesions
    corecore